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Abstract

In this paper, we study the interaction of a screw dislocation with a multi-layered interphase between a circularly
cylindrical inclusion and a matrix. The layers are coaxial cylinders of annular cross-sections with arbitrary radii and
different shear moduli. The number of layers may also be arbitrary. Continuity of traction and displacement across
all interfaces is assumed. We extend Honein et al.�s solution of circularly cylindrical layered media in anti-plane elas-
tostatics to the case where all the singularities reside inside the inclusion core. The solution to this heterogeneous prob-
lem is given explicitly, for arbitrary singularities, as a rapidly convergent Laurent series, whose coefficients are expressed
in terms of those of the complex potential of a corresponding homogeneous problem with the same singularities. We
then consider the two particular cases of a screw dislocation, where, in the first instance, the dislocation resides inside
the matrix, while, in the second instance, it is located in the inclusion core. In both instances, the Peach–Koehler force
acting on the dislocation is calculated explicitly as a rapidly convergent series. We present several examples, where the
effect of the layers on the material force is examined.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In a recent paper, Liu et al. (2003) have considered the problem of the interaction of a screw dislocation
with an interphase layer between a circular inclusion and a matrix. They have combined the sectionally
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holomorphic function, Cauchy integral and Laurent series expansion techniques to arrive at explicit series
solutions for the two cases when the screw dislocation is located either in the inclusion or in the matrix. It
turns out that the latter case is a particular instance of a much more general treatment carried out some
years earlier by Honein et al. (1994). These authors have treated the case where an arbitrary number of lay-
ers are embedded between the inclusion and the matrix, which may be subjected to arbitrary singularities
and/or loading. Their method, a procedure which they have termed ‘‘heterogenization’’, consists in relating
the solution of this heterogeneous problem to that of a corresponding homogeneous one, where the inclu-
sion and layers are absent and the matrix material occupies the whole space. Furthermore, they have shown
that, once the known solution to the homogeneous problem is expanded in a power series, the solution to
the heterogeneous problem can then be written down immediately as a rapidly convergent series. They have
also demonstrated that the transformation effecting this result can be expressed concisely and elegantly in
terms of a group structure on the set I = (�1,1), of real numbers, x, such that �1 < x < 1. The problem of a
screw dislocation residing inside a matrix in the presence of an arbitrary number of layers was thus solved;
since it was provided in that work as a specific example, which Liu et al. have failed to cite.

The purpose of this paper is twofold. First, we extend Honein et al�s result to the case where the singu-
larities are all inside the inclusion. Second, as a particular case, we study in detail the interaction of a screw
dislocation with a multi-layered interphase between a circular inclusion and a matrix. Explicit rapidly con-
vergent Laurent series solutions will be provided for the two cases when the screw dislocation is located
either in the matrix or in the inclusion. The material (or Peach–Koehler) force on the screw dislocation will
be evaluated using Budiansky and Rice�s formula (1973) for the J-integral in anti-plane elastostatics. In the
case of a screw dislocation residing in the matrix, and apart from a missing factor due to a misprint, our
result for the Peach–Koehler force agrees with the one obtained by Honein et al. (1994).

In the particular case, when the number of layers is reduced to just one, our derivation yields the same
results as the ones obtained by Liu et al. (2003). However, our formulas are expressed in a more compact
form, especially for the case where the dislocation is inside the inclusion.

Dislocations behavior may explain certain strengthening or hardening mechanism in a number of tradi-
tional and composite materials (Hirth and Lothe, 1982). The interaction of dislocations with inclusions
(inhomogeneities) has received some considerable attention from the research community. For instance,
Gong and Meguid (1994) consider the interaction effects between a screw dislocation and an elastic ellip-
tical inhomogeneity. A general solution to the problem is obtained through the use of conformal mapping
and the complex variable method. For earlier work, the reader may wish to consult, for example, Smith
(1968) and Sendeckyj (1970). See also the references cited in Liu et al. (2003). Additionally, dislocations
can be used to model cracks. Therefore our solution can be used as a building block to model cracks in
multi-layered media, see for example Chao and Young (1998) and the references therein.

The remainder of this paper is organized as follows. After briefly recollecting the basic notation of the
complex formulation of antiplane elastostatics, we proceed to recall the solution to a multi-layered circular
inclusion perfectly bonded to an infinite matrix. This elastic system may be subjected to loading or singu-
larities, which produce an anti-plane deformation but are otherwise arbitrary. In this instance the singular-
ities are assumed to reside in the matrix.

Then we consider the particular case of a screw dislocation residing inside the matrix. We write down the
solution explicitly in the form of a rapidly convergent power series and we calculate the material force act-
ing on the screw dislocation in the presence of an arbitrary number of layers.

Next, we turn our attention to the case where the singularities are inside the innermost region of the
inclusion (the inclusion core). Following the same line of reasoning as presented by Honein et al. (1994),
we express the solution to this heterogeneous problem in terms of the solution of the corresponding homo-
geneous problem, i.e., when the layers and the matrix are absent and the inclusion, still subjected to the
same singularities, occupies the whole space. We show that this can be achieved by exploiting a connection
between the solution to the heterogeneous problem and a group structure on the set I = (�1, 1), of real
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numbers x, such that �1 < x < 1. It is the same group structure that served to write down the solution when
the singularities were in the matrix.

The solution is then worked out for the case when a screw dislocation resides in the innermost region of
the inclusion. Again, the solution is derived in the form of a rapidly convergent Laurent series expansion
and the material force acting on the screw dislocation is expediently calculated, using the residue theorem
and a formula due to Budiansky and Rice (1973), relating the J-integral to the complex potential in anti-
plane elastostatics. Finally, we examine in detail the influence of the layers material parameters and thick-
ness on that force and we draw some conclusions.
2. Complex formulation of anti-plane elastostatics

Under anti-plane deformation, the displacement field satisfies
u1 ¼ u2 � 0; u ¼ u3 ¼ u3ðx1; x2Þ; ð1Þ
i.e., the only nonvanishing component of displacement, with respect to a Cartesian coordinate system
Ox1x2x3, is u = u3 which is a function of the coordinates x1 and x2 only.

As is well known, the displacement field u, for a homogeneous material, can be expressed, in the case of
antiplane elastostatics, in terms of an analytic complex function / of a complex variable z = x1 + ix2,
namely
u ¼ 1

l
If/ðzÞg; ð2Þ
where l is the shear modulus and I stands for the imaginary part of the argument. Then the nonvanishing
stress components, in Cartesian coordinates, are related to / by
r23 þ ir13 ¼ /0 ð3Þ
and, in polar coordinates, by
rh3 þ irr3 ¼ eih/0; ð4Þ
where, throughout this paper, prime indicates differentiation with respect to the complex variable z.

2.1. The structure of the complex potential

Consider a stress distribution in a domain, X, specified by the complex potential, /, see Fig. 1.
Eq. (3) demands that / 0 be a single-valued function in X. It follows that / itself must be a single-valued

function if X is simply connected and free of singularities.
We consider now the case where X is a region that contains singularities. To this end, we suppose that u

is singular at a point zk and we further assume that u increases by bk, where bk is a real number, as we tra-
verse in the counterclockwise direction along a contour enclosing zk. The quantity thus introduced, bk is the
third component of the Burgers vector defining a screw dislocation. Thus, for m such singularities, the com-
plex potential / can be written in the form
/ ¼
Xm
k¼1

lbk

2p
þ i

tk
2p

� �
logðz� zkÞ þ /�; ð5Þ
where /* is holomorphic and single-valued in X and tk is a real number which will be defined shortly.



Fig. 1. An elastic field in a domain, X, with possible singularities at the points: z1, z2, . . . .
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In the neighborhood of zk, we have
/ ¼ lbk

2p
þ i

tk
2p

� �
log r þ ihþ a holomorphic function; ð6Þ
where r = jz � zkj and h = arg(z � zk).
Hence, it follows from Eqs. (2) and (3) that the displacement increases by bk and the traction by tk as one

traverses along a contour surrounding the singularity located at zk in the counterclockwise direction. Thus,
tk represents the total traction around a path enclosing the singularity.

The form (6) holds also for a multiply connected region with m contours Ck, zk being a point inside the
region Xk, even when X is an infinite region, provided we require that /* be analytic at the point at infinity.
3. Solution of a multi-layered inclusion: all singularities are in the matrix

In this section, we consider the system shown in Fig. 2 whose cross-section consists of n � 1 concentric
circular rings D1, . . .,Dn�1 perfectly bonded along their common boundaries. The innermost boundary is
D
D1

Dn

Dn-1
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an-1

a1

a

$

$

x

x

$

Fig. 2. A multi-layered domain with all singularities in the matrix.
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perfectly bonded to a circular domain Dn, while the outermost boundary, a circle of radius a = a0, is per-
fectly bonded to a matrix D, of infinite extent, occupied by a material of shear modulus l = l0 and sub-
jected to arbitrary loading/singularities. The domain Di is occupied by a material of shear modulus li,
i = 1, . . .,n, the outer radius of Di is ai�1, i = 1, . . .,n, while its inner radius is ai, i = 1, . . .,n � 1.

We designate by / the solution to the corresponding homogeneous problem, i.e., the problem when the
multi-layered inclusion is absent and the domain D, still subjected to the same loading/singularities, occu-
pies the whole space.

We seek to express the solution to the heterogeneous problem in terms of /. Thus we set
in D : U ¼ /þ Haðf Þ; ð7Þ
in Di : Ui ¼ /þ /i þ HaiðfiÞ; i ¼ 1; . . . ; n� 1; ð8Þ
in Dn : Un ¼ /þ /n. ð9Þ
The functions /1 and f are analytic in the disk r < a, while /i+1 and fi are analytic in the disk r < ai, for
i = 1, . . .,n � 1.

Here Hai is the ‘‘hat’’ transformation, which is defined by HaiðfiÞ ¼ fiða2i =�zÞ, where the overbar denotes
complex conjugation.

Upon using the notation
mi ¼ li=li�1; i ¼ 1; . . . ; n; ð10Þ
qi ¼ a2i =a

2
i�1; i ¼ 1; . . . ; n� 1 ð11Þ
and
ai ¼ ðmi � 1Þðmi þ 1Þ�1
; i ¼ 1; . . . ; n; ð12Þ
it can then be shown (see Honein et al., 1994) that, if the solution to the homogeneous problem is expressed
by a Taylor series expansion as / ¼

P1
k¼1bkz

k, where bk, k=1, . . . ,1 are complex coefficients, then the
solution to the heterogeneous problem can be written down as
f ¼
X1
k¼1

a1 � qk1ða2 � qk2ð� � �ÞÞbkzk; ð13Þ
where the * operation is defined by
x � y ¼ xþ y
1þ xy

. ð14Þ
The functions /i and fi, which give the solution inside the fiber, can be obtained by induction according to
2/iþ1 ¼ ðmiþ1 � 1Þ/þ ðmiþ1 þ 1Þ/i þ ð1� miþ1Þfi; i ¼ 0; . . . ; n� 1 ð15Þ
and
2Qiþ1fiþ1 ¼ ð1� miþ1Þ/þ ð1� miþ1Þ/i þ ðmiþ1 þ 1Þfi; i ¼ 0; . . . ; n� 2 ð16Þ

with the convention /0 = 0 and f0 = f.

These last relations have been obtained by enforcing the continuity of traction and displacement across
the boundary common to Di and Di+1. The Qj operator on an analytic function h is defined by
QjhðzÞ ¼ hðqjzÞ; j ¼ 1; . . . ; n� 1. ð17Þ
The operation * endows the set I = (�1,1) of real numbers x such that �1 < x < 1 with a group structure.
Eq. (13) provides an explicit solution of the heterogeneous problem, with an arbitrary number of layers,

in terms of that of the corresponding homogeneous one.
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If the matrix is subjected to remote uniform shear loading then the complex potential for the homoge-
neous problem is given by / = sz, where s is a complex constant. The solution of the multilayered fiber
problem can thus be written down immediately as
f ¼ sa1 � q1ða2 � q2ð� � �ÞÞz; ð18Þ

which shows that the multi-layered inclusion may be replaced by a single homogeneous inclusion of equiv-
alent relative modulus given by
að1Þeq ¼ a1 � q1ða2 � q2ð� � �ÞÞ ð19Þ
without affecting the state of stress in the matrix. However, the stress distribution inside the inclusion will
depend on the arrangement of the layers and on their material properties.

More generally, we may call
aðkÞeq ¼ a1 � qk1ða2 � qk2ð� � �ÞÞ; ð20Þ
the equivalent relative modulus of order k, so that the solution in the matrix to the heterogeneous problem
can be expressed as
f ¼
X1
k¼1

aðkÞeq bkz
k; ð21Þ
provided that the solution to the corresponding homogeneous problem is given by the complex potential
/ ¼

P1
k¼1bkz

k.
4. The material force on a screw dislocation residing in the matrix

In this section, we consider the example of a screw dislocation interacting with a multilayered circular
inclusion.

Without loss of generality, we assume that the screw dislocation is located at the point, �c, of the x1-axis
where jcj > a (see Fig. 3).
D
D1

Dn

Dn-1

an-2

an-1

a1

a

x1-c

$

Fig. 3. A screw dislocation in the matrix interacting with a multi-layered inclusion.
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The complex potential of the corresponding homogeneous problem (i.e., when the multi-layered inclu-
sion is absent and the matrix material occupies the whole space) is given by (see Eq. (5))
/ ¼ bl
2p

lnðzþ cÞ; ð22Þ
where b is a real constant designating the third component of the Burgers vector.
In the domain r < a, / has the expansion (up to an additive constant, which can be discarded)
/ ¼ bl
2p

X1
k¼1

ð�1Þk�1 zk

kck
. ð23Þ
Thus, it immediately follows from Eq. (21) that:
f ¼ bl
2p

X1
k¼1

ð�1Þk�1aðkÞeq

zk

kck
. ð24Þ
Once we have an explicit solution in terms of the complex potential, the simplest and most expedient way
to evaluate the material (or Peach–Koehler) force acting on a screw dislocation is through a formula for the
J1 and J2 integrals derived by Budiansky and Rice (1973). In general, these two integrals represent the mate-
rial force, or the negative of the energy release rate, as a defect enclosed by the contour of integration
undergoes a unit displacement in the x1 and the x2 direction, respectively. In anti-plane elastostatics, the
formula can be written as
J 1 � iJ 2 ¼ � i

2l

I
C

ðU0Þ2 dz; ð25Þ
where U is the complex potential and C is a contour surrounding the defect (the screw dislocation, in our
case).

Upon substituting (7) into (25) and noting that / is given by (22), it can easily be shown, by applying the
residue theorem, that the above-mentioned equation takes the form
J 1 � iJ 2 ¼ bðHðf ÞÞ0
��
z¼�c

; ð26Þ
which, upon using (24), leads to
J 1 � iJ 2 ¼ � lb2

2pc

X1
k¼1

aðkÞeq

a
c

� �2k
. ð27Þ
This result yields the material force (or the Peach–Koehler force, in the case of a screw dislocation) acting
on the point singularity.

The series given by (27) is rapidly convergent for it has a convergent geometric series as a majorant; since
jaðkÞeq j ¼ ja1 � qk1ða2 � qk2ð� � �ÞÞj < 1. Furthermore, from this last observation an upper bound on the error
when the series (27) is truncated for the purpose of numerical computation can be easily derived.

The equations derived in this section agree with the ones obtained by Honein et al. (1994). However,
their final expression for the Peach–Koehler force contains some misprints.

For the case n = 2 (a homogeneous interphase layer between the inclusion and the matrix), our result for
the complex function f reduces to
f ¼ bl
2p

X1
k¼1

ð�1Þk�1 a1 þ a2qk1
1þ a1a2qk1

zk

kck
ð28Þ
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and Eq. (27) takes the form
Fig. 4.
layer f
J 1 � iJ 2 ¼ � lb2

2pc

X1
k¼1

a1 þ a2qk1
1þ a1a2qk1

a
c

� �2k
. ð29Þ
These last two equations are in agreement with the ones arrived at by Liu et al. (2003), although our
formulas are written down in a more compact form.

The case of a multi-layered interphase around a hole can be obtained from Eq. (27) by setting
an ¼ �1; ð30Þ
while that of a multi-layered interphase surrounding a rigid inclusion is derived by putting
an ¼ 1. ð31Þ
Many other particular cases in the literature can be derived from (27) as well by selecting appropriate
values for the parameters a1,a2, . . . and q1,q2,. . ., which are the only relevant ones, as can be easily seen
upon inspection of Eq. (20).

It is well known that a circular hole attracts a dislocation. The presence of a single layer, which is softer
than the matrix, does not alter this statement. However equilibrium positions exist when a circular hole is
coated with a material which is harder than the matrix. Fig. 4 illustrates this point.

In Fig. 4, we plot the dimensionless material force F 0 ¼ 2pa
lb2

J 1, as a function of the dimensionless dislo-
cation location given by c

a, for various values of the shear modulus of a homogeneous single layer coating
the hole rim. As can be seen, for small values of l1 (e.g., 0.5), the effect of the hole remains dominant even as
the dislocation approaches the boundary. However as the value of l1 increases the layer starts asserting
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Material Force on a dislocation in matrix with a coated hole
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µ1=4
µ1=10

The material force acting on a screw dislocation in a matrix due to the presence of a hole coated with a single homogeneous
or various values of the shear modulus l1. The other parameters are l0 = 1, a0 = 1 and a1 = 0.9.
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Fig. 5. The material force acting on a screw dislocation in a matrix due to the presence of a soft inclusion coated with a single
homogeneous layer for various values of the shear modulus l1. The other parameters are l0 = 1, l2=0.1, a0 = 1 and a1 = 0.9.
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Fig. 6. The material force acting on a screw dislocation in a matrix due to the presence of a hard inclusion coated with a single
homogeneous layer for various values of the shear modulus l1. The other parameters are l0 = 1, l2 = 20, a0 = 1 and a1 = 0.9.
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itself and the force which is attractive away from the hole becomes repulsive as the dislocation nears the
boundary, thus giving rise to a stable equilibrium position. As the value of the shear modulus increases
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further the layer becomes dominant and the force becomes repulsive throughout the range and decays rap-
idly to zero as we move away from the hole.

The character of the solution is not altered by much if the hole is replaced by a soft inclusion. This can be
clearly shown upon inspecting Fig. 5.

When the soft inclusion is replaced with a hard one, the sign of the force is reversed as shown in Fig. 6
and the stable equilibrium positions become unstable.

As shown in Fig. 7, the presence of an additional layer will alter the character of the solution and for
certain combinations of the shear moduli, two equilibrium positions are possible. However, only one of
them would be stable. Also, this figure shows that for a given thickness, any of the layers may become dom-
inant if its shear modulus is high enough.

Fig. 8 shows the variation of the material force, on a screw dislocation with a fixed location, as a func-
tion of the thickness of one of the layers. Typically, the layer becomes dominant as its thickness increases
and the figure shows the typical rise in the force magnitude with the increase in thickness.
5. Solution of a multi-layered inclusion: all singularities are in the inclusion core

In this section, we consider the same system shown in Fig. 2. However, this time we assume that all sin-
gularities reside in the inclusion core; that is in the domain Dn, see Fig. 9.

We designate by / the solution to the corresponding homogeneous problem, i.e., the problem when the
layers and the matrix are absent while the whole space is occupied by the same material as that of the inclu-
sion core, which is still subjected to the same singularities.

As pointed out in Section 2.1, the complex potential / can be written down as
/ ¼ A lnðzÞ þ /0; ð32Þ
where A is a complex constant and /0 is analytic in the domain defined by jrj > an�1, including the point at

infinity.
Our objective is to express the solution to the heterogeneous problem in terms of /. In view of the prin-

ciple of superposition, we can treat the terms A ln(z) and /0 separately. Furthermore, when only the first
term is present, we can divide the problem into two separate cases: the first being that of a screw dislocation
D
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$

x

Fig. 9. A multi-layered elastic system; all singularities are in the inclusion core.
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at the origin (A is purely real) and the second being that of a point force at the origin (A is purely imag-
inary). In what follows, these three cases will be considered independently.

5.1. Case 1: screw dislocation at the origin

In this subsection, we shall consider a screw dislocation acting at the origin. As is well known the com-
plex potential of the corresponding homogeneous problem is given by the following expression.
/ ¼ bln

2p
lnðzÞ; ð33Þ
where b, a real number, designates the third component of the Burgers vector. It can be easily seen that the
solution to the heterogeneous problem may be written down immediately as
in Dn : Un ¼
bln

2p
lnðzÞ; ð34Þ

in Dn�1 : Un�1 ¼
bln�1

2p
lnðzÞ; ð35Þ

..

.

in D1 : U1 ¼
bl1

2p
lnðzÞ; ð36Þ

in D : U ¼ bl
2p

lnðzÞ. ð37Þ
The above-mentioned solution ensures the continuity of displacement and traction at all interfaces.

5.2. Case 2: point force at the origin

When a point force is located at the origin, the complex potential for the corresponding homogeneous
problem is given by
/ ¼ it lnðzÞ; ð38Þ

where t is a real constant.

We seek the solution to the heterogeneous problem in the form.
in Dn : Un ¼ it lnðzÞ; ð39Þ
in Dn�1 : Un�1 ¼ it lnðzÞ þ icn�1; ð40Þ

..

.

in D1 : U1 ¼ it lnðzÞ þ ic1; ð41Þ
in D : U ¼ it lnðzÞ þ ic0; ð42Þ
where c0,c1, . . .,cn�1 are real constants.
By imposing the continuity of displacement and traction along the common boundaries, it can be shown

that the constants, ck, can be obtained using the following recursive formulas:
cn�1 ¼ ðm�1
n � 1Þt lnðan � 1Þ; ð43Þ

cj ¼ ðm�1
jþ1 � 1Þt lnðajÞ þ m�1

jþ1cjþ1; j ¼ n� 2; . . . ; 0; ð44Þ
where we recall that mj, j = 1, . . .,n have been defined by Eq. (10), with the convention that l0 = l.
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5.3. Case 3: / is analytic in the domain r > an�1 including the point at infinity

In this section, we consider the system shown in Fig. 9. We assume, however, that the singularities, all
located in the domain Dn, give rise in the corresponding homogeneous problem to a complex potential /
that is analytic in the domain r > an�1, including the point at infinity.

We seek the solution to the heterogeneous problem in the form
in Dn : Un ¼ /þ Han�1
ðfnÞ; ð45Þ

in Di : Ui ¼ /þ /i þ Hai�1
ðfiÞ; i ¼ n� 1; . . . ; 1; ð46Þ

in D : U ¼ /þ /0. ð47Þ
The functions /0 and f1 are analytic in the domain r > a, including the point at infinity, while /i and fi+1 are
analytic in the domain r > ai, including the point at infinity, for i = n � 1, . . . , 1.

For later convenience, we define
pj ¼ q�1
j ¼ aj�1

aj

� �2

; j ¼ 1; . . . ; n� 1; ð48Þ
where we set a0 = a.
Following the line of reasoning outlined in Honein et al. (1994), let Rn be the image operator associated

with Dn�1, . . .,D1, D relative to Dn, and Rn�1 be the image operator associated with Dn�2, . . .,D1, D relative
to Dn�1. We wish to establish a relation between Rn and Rn�1.

It follows from the definition of these operators that:
fn�1 ¼ Rn�1ð/þ /n�1Þ. ð49Þ
On the other hand, we have
fn ¼ Rnð/Þ. ð50Þ

Enforcing the continuity of displacement across r = an�1, we obtain
/n�1 � Pn�1ðfn�1Þ ¼ ðm�1
n�1 � 1Þ/� m�1

n fn; ð51Þ

where we define the operators Pj; j ¼ 1; . . . ; n� 1 on an analytic function g by
PjðgÞðzÞ ¼ gðpjzÞ. ð52Þ
Another relation can be obtained by requiring that the traction be continuous across r = an�1. This yields
/n�1 þ Pn�1ðfn�1Þ ¼ fn. ð53Þ

Upon adding and subtracting Eqs. (51) and (53), we obtain
2/n�1 ¼ ðm�1
n � 1Þð/� fnÞ ð54Þ
and
2Pn�1ðfn�1Þ ¼ ðm�1
n þ 1Þfn � ðm�1

n � 1Þ/. ð55Þ

Substituting Eqs. (49) and (50) into the last two relations yields
Pn�1Rn�1 m�1
n þ 1

� �
/� m�1

n � 1
� �

Rnð/Þ
� �

¼ 1� m�1
n

� �
/þ 1þ m�1

n

� �
Rnð/Þ; ð56Þ
which gives
m�1
n þ 1

� �
Rnð/Þ þ m�1

n � 1
� �

Pn�1Rn�1Rnð/Þ ¼ m�1
n � 1

� �
/þ m�1

n þ 1
� �

Pn�1Rn�1ð/Þ. ð57Þ
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Hence
ðI þ bnPn�1Rn�1ÞRn ¼ bnI þ Pn�1Rn�1; ð58Þ

where I is the identity operator and bn is defined by
bn ¼
m�1

n � 1

m�1
n þ 1

¼ �an. ð59Þ
Eq. (58) implies
Rn ¼ ðI þ bnPn�1Rn�1Þ�1ðbnI þ Pn�1Rn�1Þ. ð60Þ

The last equation expresses the image operator of n domains in terms of that of n � 1 domains, and it is
similar to the one derived by Honein et al. (1994) when all singularities are inside the matrix.

To write down the solution to this heterogeneous problem explicitly, let us now assume that the solution
to the corresponding homogeneous problem, /, has the following Laurent series expansion in the domain
r > an�1
/ ¼
X1
k¼0

bkz�k; ð61Þ
where bk, k = 0, . . .,1 are complex coefficients, then, following the same line of arguments as in afore-men-
tioned paper, one can show that the solution to the multilayered problem, when all singularities are inside
the inclusion core, is given by
fn ¼
X1
k¼0

bn � p�k
n�1ðbn�1 � � � �Þbkz�k ¼

X1
k¼0

bn � qkn�1ðbn�1 � � � �Þbkz�k; ð62Þ
where we recall that the * operation is defined by
x � y ¼ xþ y
1þ xy

. ð63Þ
Once fn is given, all remaining complex potentials can be obtained by induction by enforcing continuity of
traction and displacement across the various interfaces.

Eq. (62) provides an explicit solution of the heterogeneous problem with an arbitrary number of layers,
singularities being inside the inclusion core, in terms of that of the homogeneous one.
6. The material force on a screw dislocation residing in the inclusion core

In this section, we consider the example of a screw dislocation located inside an inclusion core and inter-
acting with a matrix through an arbitrary number of layers.

Without loss of generality, we assume that the screw dislocation is located at the point c of the x1� axis
where jcj < an�1 (see Fig. 10).

The complex potential of the corresponding homogeneous problem (i.e., when the layers and the matrix
are absent and the inclusion-core material occupies the whole space) is given by (see Eq. (5))
/ ¼ bln

2p
lnðz� cÞ; ð64Þ
where b is a real constant designating the third component of the Burgers vector.
The complex potential / can be written as
/ ¼ bln

2p
ln 1� c

z

� �
þ lnðzÞ

� �
. ð65Þ
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Fig. 10. A screw dislocation in the inclusion core interacting with an arbitrary number of layers.
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In the domain r > an�1, the first term is analytic including the point at infinity and we have the following
expansion:
ln 1� c
z

� �
¼ �

X1
k¼1

ck

kzk
. ð66Þ
Thus, it immediately follows from Eq. (62) that:
fn ¼ � bln

2p

X1
k¼1

bn � qkn�1 bn�1 � � � �ð Þ c
k

kzk
. ð67Þ
The solution inside the inclusion core can now be written as
Un ¼
bln

2p
lnðz� cÞ þ Han�1

ðfnÞ. ð68Þ
To evaluate the material (or Peach–Koehler) force acting on the screw dislocation, we apply Budiansky
and Rice�s formula (25), which leads to
J 1 � iJ 2 ¼ bðHðf ÞÞ0
��
z¼c

; ð69Þ
which, upon using (67), yields
J 1 � iJ 2 ¼ � b2ln

2pc

X1
k¼1

bn � qkn�1ðbn�1 � � � �Þ
c

an�1

� �2k

. ð70Þ
This result yields the material force (or the Peach–Koehler force, in the case of a screw dislocation) acting
on the point singularity.

Since jbn � qkn�1ðbn�1 � � � �Þj < 1, the series given by (70) is rapidly convergent; for it has a convergent geo-
metric series as a majorant, and it yields the material force acting on a screw dislocation inside an inclusion
core when an arbitrary number of layers is present between the inclusion core and the matrix. Furthermore,
an upper bound on the error when the series (70) is truncated for the purpose of numerical computation can
be easily derived.

For the case n = 2 (a homogeneous interphase layer between the inclusion and the matrix,) our result for
the complex function f2 reduces to
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f2 ¼ � bl2

2p

X1
k¼1

b2 þ b1q
k
1

1þ b2b1q
k
1

ck

kzk
; ð71Þ
and Eq. (70) takes the form
J 1 � iJ 2 ¼ � b2l2

2pc

X1
k¼1

b2 þ b1q
k
1

1þ b2b1q
k
1

c
a1

� �2k

. ð72Þ
This last result is in agreement with the one derived by by Liu et al. (2003), although our equation is written
down in a much more compact form.

Eq. (70) is similar to (27), which yields the material force on a dislocation in the matrix, and similar re-
sults to those obtained in Section 4 are expected. This is not surprising in light of the involution correspon-
dence that exists in anti-plane elasticity between the solution of a cylinder and that of an infinite domain
with a cylindrical hole.

The case of a multi-layered cylinder bonded to a rigid enclosure (zero displacement at the boundary) can
be obtained from Eq. (70) by setting
b1 ¼ 1. ð73Þ

In Fig. 11, we plot the dimensionless material force F 0 ¼ 2pa1

l2b
2 J 1, as a function of the dimensionless dis-

location location given by c
a1
, for various values of the shear modulus of a homogeneous single layer coating

the inclusion core. As can be seen, for small values of l1 (e.g., 0.5), the effect of the soft matrix remains
dominant even as the dislocation approaches the boundary. However as the value of l1 increases the layer
starts asserting itself and the force which is attractive away from the boundary becomes repulsive as the
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dislocation nears the layer, thus giving rise to an equilibrium position, which can be shown to be unstable.
As the value of the shear modulus increases further the layer becomes dominant and the force becomes
repulsive throughout the range and decays rapidly to zero as the dislocation moves toward the center.

When the soft matrix is replaced with a hard one, the sign of the force is reversed as is shown in Fig. 12
and the unstable equilibrium positions become stable.

As shown in Fig. 13, the presence of an additional layer will alter the character of the solution and for
certain combinations of the shear moduli, two equilibrium positions are possible. However, only one of
them would be stable. Also, this figure shows that for a given thickness, any of the layers may become dom-
inant if its shear modulus is high enough.

Fig. 14 shows the variation of the material force, on a screw dislocation with a fixed location, as a func-
tion of the thickness of one of the layers. Typically, the layer becomes dominant as its thickness increases
and the figure shows the typical decrease in the force magnitude with the increase in thickness. It is inter-
esting to note, however, that this assertion does not always hold true as is seen for the case l1= 0.2.
7. Conclusions

In this paper, we presented a novel solution for a multi-layered media in anti-plane elastostatics when all
singularities are inside the inclusion core. The essence of the new methodology is a recursive scheme which
yields the solution to this heterogeneous problem as a transformation performed on the known solution to
the corresponding homogeneous problem. This transformation can be expressed concisely and elegantly in
terms of a group structure on the set I = (�1,1), of real numbers, x, such that �1 < x < 1. This work ex-
tends a prior research by Honein et al. (1994) who considered the case where the singularities are in the
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matrix. The solution given here is an explicit rapidly convergent Laurent series, whose terms are obtained
by multiplying those of the corresponding homogeneous problem with certain appropriate coefficients,
which depend only upon the radii of the various layers and their shear moduli. The number of the concen-
tric layers may be arbitrary as well their thicknesses and shear moduli. The singularities are also arbitrary.
The two special cases of a screw dislocation either inside the matrix or in the inclusion core were dealt with.
The Peach–Koehler force was calculated explicitly as a rapidly convergent series and numerous examples
illustrating the effect of the layers have been given.
Acknowledgements

The authors would like to thank the reviewers for their useful suggestions and Dr. Tony Honein for help-
ful discussions. This work has been supported by the Faculty of Engineering at University of Balamand.
This support is gratefully acknowledged.
References

Budiansky, B., Rice, J.R., 1973. Conservation laws and energy-release rates. Journal of Applied Mechanics-ASME (40), 201–203.
Chao, C.K., Young, C.W., 1998. Antiplane interaction of a crack with a circular inclusion in an elastic half plane. Journal of

Engineering Mechanics-ASCE (124), 167–175.
Gong, S.X., Meguid, S.A., 1994. A Screw Dislocation Interacting with an Elastic Elliptical Inhomogeneity. International Journal of

Engineering Science (8), 1221–1228.
Hirth, J.P., Lothe, J., 1982. Theory of Dislocations. McGraw-Hill, New York.
Honein, T., Honein, E., Herrmann, G., 1994. Circularly cylindrical and plane layered media in antiplane elastostatics. Journal of

Applied Mechanics-ASME (61), 243–249.
Liu, Y.W., Jiang, C.P., Cheung, Y.K., 2003. A screw dislocation interacting with an interphase layer between a circular inhomogeneity

and the matrix. International Journal of Engineering Science (41), 1883–1898.
Sendeckyj, G.P., 1970. Screw dislocations in inhomogenous solids. In: Simmons, J.A., de Wit, R., Bullough, R. (Eds.), Fundamental

Aspects of Dislocation Theory. National Bureau of Standards, US, pp. 57–69.
Smith, E., 1968. The interaction between dislocations and inhomogeneities-I. International Journal of Engineering Science (6), 129–

143.


	The material force acting on a screw dislocation in the presence of a multi-layered circular inclusion
	Introduction
	Complex formulation of anti-plane elastostatics
	The structure of the complex potential

	Solution of a multi-layered inclusion: all singularities are in the matrix
	The material force on a screw dislocation residing in the matrix
	Solution of a multi-layered inclusion: all singularities are in the inclusion core
	Case 1: screw dislocation at the origin
	Case 2: point force at the origin
	Case 3:  phi  is analytic in the domain ran minus 1 including the point at infinity

	The material force on a screw dislocation residing in the inclusion core
	Conclusions
	Acknowledgements
	References


